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This paper analyzes the properties of a two-field critical gradient model that couples a heat equation
to an evolution equation for the turbulence intensity. It is shown that the dynamics of a perturbation
is ballistic or diffusive depending on the shape of the pulse and also on the distance of the
temperature gradient to the instability threshold. This dual character appears in the linear response
of this model for a wave packet. It is recovered when investigating the nonlinear solutions of this
system. Both self-similar diffusive fronts and ballistic fronts are shown to exist. When the
propagation is ballistic, it is found that the front velocity is the geometric mean between the
turbulent diffusion coefficient and a microinstability growth rate. © 2007 American Institute of
Physics. #DOI: 10.1063/1.2824375$

I. INTRODUCTION

The development of a mean field theory of turbulent
transport has long been a subject of interest in plasma phys-
ics. In particular, it provides the basis for writing reduced
transport models for fusion plasmas, which allow us to cal-
culate at low cost the mean density, velocity, and temperature
profiles. Models based on a quasilinear theory coupled to a
mixing length estimate have met some success in the past.1,2

Nevertheless reduced transport models sometimes fail,3 for
reasons which are not always easy to identify. This is the
reason why semiheuristic models such as Critical Gradient
Models !CGM" !Refs. 5 and 6" have been developed, in par-
ticular for interpreting modulation experiments !see Ref. 4
for an overview". Their main advantage is the handling of a
limited number of free parameters, which are deduced from
experiment and can be compared in different devices. This
procedure has been quite successful in analyzing modulation
experiments,7 and is supported by recent comparison be-
tween experiment and theory on AUG.8 However it was
shown recently that a Critical Gradient Model fails to explain
the fast propagation of a cold pulse produced by impurity
laser blow-off and the dynamics of the electron temperature
during heat modulation, when using the same set of param-
eters. These two experiments were done simultaneously in
the same discharges on JET, to minimize the sources of
errors.9 Hence it appears that the same plasma can exhibit a
slow quasidiffusive or a fast ballistic-like behavior, depend-
ing on the type of transient that is performed. This is quite a
challenge for theory.

Several attempts have been proposed to solve this issue,
and to improve the reliability of transport predictions. Inter-
mittency is often invoked as the main argument against the
development of a mean field theory based on a combination
of quasilinear and mixing-length theories. The reason is that
intermittency contradicts the assumption of Gaussian statis-
tics, which underlies most closure schemes used for justify-
ing the quasilinear theory or the use of a mixing-length esti-

mate. Models based on fractional kinetics have been
proposed to overcome this difficulty.10 These models are able
to exhibit both diffusive and ballistic behaviors. They are
however quite delicate to deal with in practice. Moreover
they are usually considered in the test-particle limit, i.e., for
a given statistics of fluctuations, whereas one would like to
incorporate a self-consistent relation between the turbulence
intensity and the gradients which drive the fluctuations. So
an interesting question is whether a more “conventional”
model based on a set of partial derivative equations is suffi-
cient to describe the whole dynamics. One purpose of this
paper is to show that a mean field model can be double-
faced, i.e., diffusive in some cases, and ballistic in others.
Certainly the simplest critical gradient model cannot do that.
However it can be modified to exhibit such a bivalent char-
acter. The basic idea is to couple the transport equation to an
evolution equation for the turbulence intensity, i.e., to deal
with a two-field critical gradient model. This is not a new
idea by far. Similar models have been proposed for modeling
the dynamics of barrier formation,11–13 avalanche
dynamics,14 self-organized critical systems,15 and turbulence
spreading.16–20 The model proposed by Naulin et al.19 was
compared quite successfully to JET experimental data.21 The
model that is presented here is kind of minimal, ignoring in
particular the possible role of a group velocity,20,22 which
may obviously drive a ballistic behavior. Also it does not
account for shear flows !mean or zonal flows", which are
important players in the dynamics of transport transients.
This is particularly obvious when a transport event crosses a
transport barrier.

The main aim of the paper is to derive some exact results
related to this class of models. It is shown in particular that
the system linear response exhibits a diffusive or a ballistic
dynamics depending on parameters such as the heat flux and
the wave number. This dual character is also revealed when
investigating the nonlinear solutions of this system. Self-
similar diffusive fronts and ballistic fronts are shown to exist,
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thus extending previous results by Hahm et al.16 for self-
similar fronts, and by Gürcan and Diamond for ballistic
fronts.23 The existence of these nonlinear front solutions in-
dicate that the double character of a two-field critical gradi-
ent model is a robust feature.

The paper is organized as follows: The coupling between
a critical gradient model and an evolution equation for tur-
bulence intensity is described in Sec. II. The linear response
for a heat wave is described in Sec. III. Nonlinear solutions
are investigated in a second stage: self-similar solutions are
presented in Sec. IV and ballistic fronts in Sec. V. The main
results are summarized in Sec. VI, together with a tentative
explanation for some of the puzzling behaviors observed in
experiments. A conclusion follows.

II. TWO-FIELD CRITICAL GRADIENT MODEL

A. Formulation

We consider here a simple slab geometry and a heat
equation coupled to an evolution equation for the level of
fluctuations

#tT = D0#x!E#xT" + Dc#xxT + S , !1"

#tE = !0!#xT − "c"#!#xT − "c"E − !nlE
2 + D1#x!E#xE" . !2"

Here, T is the temperature, and E represents a dimensionless
turbulence intensity. Typically in a tokamak, E would be the
square of electric potential fluctuations normalized to the
mixing length level, so that E%1 in usual conditions. Here
the coordinate x ranges between 0 and the system size a. The
rate !0"c is representative of a linear growth rate, and !nl is
an effective dissipation rate that leads to saturation due to
mode coupling. It is expected that !nl%!0"c, consistently
with a saturated level E%1. The turbulent diffusion coeffi-
cients D0 and D1 are of the same order of magnitude, as the
underlying mechanisms are the same, i.e., nonlinear mode-
mode coupling.20,22 While D0 is associated with heat trans-
port, the coefficient D1 measures the effect of turbulence
spreading. This term is nonlocal in essence, in contrast to the
quadratic saturation term #second term in the r.h.s. of Eq.
!2"$, which is purely local. The collisional diffusion coeffi-
cient Dc is much smaller than D0 and D1. For the sake of
simplicity, we will assume Dc=0 throughout this paper. In a
tokamak, !0"c, and therefore !nl, ranges between a few 104

and 105 s−1, and D0&1 m2 s−1. The model Eqs. !1" and !2"
bears some similarities with the one proposed by Naulin
et al.19 One difference is that the turbulent transport vanishes
below the critical threshold in the present model, whereas it
becomes negative !heat pinch" in Naulin’s model. Also the
expression of the turbulent flux is somewhat different. The
present model is also quite close to the one proposed by
Gürcan and Diamond,20 although group velocity effects were
accounted for in the later work, while they are ignored here.
The inclusion of a group velocity would obviously offer an
additional possibility for ballistic behavior. The parameter "c
is a stability threshold. This is an important ingredient of the
model as this kind of system is prone to relaxations towards
the stability threshold !profile stiffness". Profile relaxation is
also the mechanism that underlies avalanches, i.e., transport

events which propagate due to the interplay between profile
and fluctuations.24–27 It will be seen that there is indeed a
close connection between avalanches and ballistic fronts. To
simplify the notations, we will omit writing explicitly the
Heaviside function #!#xT−"c", being understood that solu-
tions are verified to be supercritical. The boundary condi-
tions are T=0 at x=0, and #xT=0 at x=a. The function S is
a heat source normalized to the density, which is written as
S=D0$%!x−a", where $ is positive and constant, and scales
as a temperature gradient. In other words we assume a con-
stant thermal flux !when applied to a tokamak geometry,
x=0 would be the edge and x=a the magnetic axis, a the
minor radius". Ignoring turbulence spreading !i.e., D1=0",
and assuming that the instability growth time is much
smaller than the confinement time so that the turbulence in-
tensity E is enslaved to the temperature gradient #xT, one
finds that at each time the turbulence intensity is given by the
relation

E =
1
g

!#xT − "c"#!#xT − "c" , !3"

where g=!nl /!0. The turbulent heat diffusivity is of the form

Dturb =
D0

g
!#xT − "c"#!#xT − "c" !4"

so that the traditional Critical Gradient Model is recovered.
In the following, it is shown that there exists cases where this
scale separation assumption is not justified. Given the restric-
tions above, the system Eqs. !1" and !2" reads

#tT = D0#x#E#xT + $#!x − 1"$ , !5"

#tE = !0!#xT − "c"E − !nlE
2 + D1#x!E#xE" . !6"

A useful equivalent form of Eqs. !5" and !6", is obtained by
taking the first derivative of the transport equation and by
replacing the temperature by its gradient A=#xT. The result-
ing system is

#tA = D0#xx#EA + $#!x − 1"$ , !7"

#tE = !0!A − "c"E − !nlE
2 + D1#x!E#xE" . !8"

B. Steady-state solution

Ignoring momentarily the turbulence spreading term,
one finds that the steady state solution is given by Eq. !3" and
therefore, for x&a,

A!A − "c" − g$ = 0. !9"

The solution above the threshold is

A0 =
"c

2
+'"c

2

4
+ g$ !10"

and the corresponding turbulence intensity
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E0 =
1
g
(−

"c

2
+'"c

2

4
+ g$) . !11"

The solution with spreading remains the same for constant
flux $ and threshold "c. Indeed adding a diffusion does not
affect constant profiles in a homogenous medium. For non-
constant parameters, explicit solutions do not exist. Solutions
were found however16,17 in the special case where the growth
rate is piecewise constant !i.e., here for constant temperature
gradient". Also approximate analytical solutions were pro-
duced by Waltz and Candy,18 which illustrate the nonlocal
character of transport models that incorporate turbulence
spreading.

III. PROPAGATION OF SMALL AMPLITUDE
PERTURBATION

A. Linear dispersion relation

We now investigate the propagation of small amplitude
perturbations, with arbitrary shape. This is useful in view of
the weak transport transients produced for instance by low
power heat modulation. Also it provides some insight into
the dynamics of nonlinear ballistic fronts. The perturbations
Ã=A−A0 and Ẽ=E−E0 are supposed to be small enough for
the transport Eqs. !7" and !8" to be linearized. We consider
the equilibrium given by Eqs. !10" and !11", which corre-
sponds to constant background gradient A0 and turbulence
intensity E0. An efficient way for solving this problem is to
write the perturbation as a Fourier integral !typically a wave
packet"

Ã!x,t" = *
−'

+' dk

2(
Ãke

i!kx−)t",

!12"

Ẽ!x,t" = *
−'

+' dk

2(
Ẽke

i!kx−)t"

and to follow the propagation for each Fourier component.
One finds the following response for a wave number k and a
pulsation ),

!i) − D0k2"Ãk − D0A0k2Ẽk = 0, !13"

!0E0Ãk + !i) + ! − D1k2"Ẽk = 0, !14"

where !=!0!A0−"c"−2!nlE0, D0=D0E0, and D1=D1E0. The
dispersion relation for a thermal wave is then easily calcu-
lated

)2 + i#!D0 + D1"k2 − !$) − k2v f
2 − D0k2!D1k2 − !" = 0. !15"

This equation admits two roots

)± = −
i

2
#!D0 + D1"k2 − !$

± +k2v f
2 +

1
4

#!D0 − D1"k2 + !$2,1/2
!16"

where the velocity v f is given by the relation,

v f = !D0!0A0E0"1/2. !17"

An alternative expression is found when using the explicit
expression of the steady solution Eqs. !10" and !11", namely
v f = !D0!0$"1/2. Also it is stressed that for this fixed point,
!=−!nlE0 is negative.

B. Diffusion versus ballistic behavior

Two limit cases can be identified from the solution
Eq. !16".

Case 1: #!D1−D0"k2−!$2!4k2v f
2.

One finds two damped thermal waves

)+ = − i!D1k2 − !" , !18"

)− = − iD0k2. !19"

These solutions correspond to the usual damped diffusive
waves !be reminded here that ! is negative".

Case 2: #!D1−D0"k2−!$2"4k2v f
2. In this case, two bal-

listic co- and counterpropagating waves are found

)± = ± kv f . !20"

The condition for moving from a diffusive to a ballistic
response can be recast as a condition on the thermal flux $.
The dynamics for a given wave number is ballistic when the
flux $ is much lower than the critical value

$c = "c
2 4!0D0k2#!D1 − D0"k2 − !nl$2

-#!D1 − D0"k2 − !nl$2 − 4!nlD0k2.2 . !21"

For a wave number that is smaller than the inverse of the
turbulence correlation length !i.e., k! *1, where ! is a tur-
bulence correlation length", one gets the condition
!0"c ,!nl! !D0+D1"k2 since the spreading diffusion is of the
same order as the heat diffusivity, i.e., D0%D1%1 m2 s−1,
and the growth rate !0%!nl%105 s−1. In this case, an ap-
proximate expression can be derived for the critical flux,
namely,

$c & 4"c
2!0D0k2/!nl

2 . !22"

In real units the critical thermal flux is of the order of
nD0"c!kl"2, where n is the density. It is found that the solu-
tion is ballistic for equilibrium heat fluxes smaller than this
critical value. These are situations where the temperature
gradient is close to the threshold. Sharp fronts !meaning high
wave numbers" satisfy this condition more easily than
smooth structures. Hence it is expected that for a fixed ther-
mal flux, a sharp front propagates ballistically, while a large
scale thermal wave behaves diffusively.

IV. SELF-SIMILAR FRONTS

A. Scale invariance

Self-similar fronts have a long story which traces back
!at least" to Anderson and Lysak28 in the context of fusion
plasmas. It was shown recently by Hahm et al.16 that Eq. !2"
admits self-similar solutions at fixed growth rate, i.e., at fixed
temperature gradient with the present notations. It appears
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quite natural to extend this result to the system Eqs. !1" and
!2". Self-similar solutions are investigated by looking for the
transformations

x → +xx, t → +tt, T → +TT, E → +EE , !23"

that leave the system invariant. It appears readily that
+T=+x /+t and +E=+x

2 /+t. This solution holds provided that
"c=0 !situation well above the threshold", and !nl=0, i.e.,
the system saturates via profile relaxation and/or turbulence
spreading. The system to be solved reads

#tT = D0#x!E#xT" , !24"

#tE = !0E#xT + D1#x!E#xE" . !25"

This system is invariant by translation, which implies that
space and time coordinates can be arbitrarily shifted by a
constant, i.e., x→x−x0 and t→ t− t0. To simplify the analysis
we assume an infinite medium. We add an additional con-
straint of energy conservation, i.e., /dxT is required to be
conserved during the front propagation. This additional con-
straint comes from the conservative nature of the heat equa-
tion, which imposes that #t/dxT=0 if the turbulent heat flux
E#xT vanishes at infinity. This constraint imposes that +x

2

=+t. It is also the unique acceptable scaling when a back-
ground diffusion is accounted for. Finally the number of pa-
rameters can be reduced by normalizing the spatial and time
coordinates, namely, x→'!0 /D0x and t→!0t. Combining
the change of variables afore mentioned, and this new con-
straint, the temperature and the turbulence intensity can be
formulated as

T =
D0

!0#D0!t − t0"$1/2T+ x − x0

#D0!t − t0"$1/2, ,

!26"

E = E+ x − x0

#D0!t − t0"$1/2, .

These expressions are valid for t, t0. They can be extended
to the domain t& t0 by using the symmetry rules !23" with
+t=−1 !details are given in the next section". Note also that
the temperature can be shifted by any arbitrary constant, but
not the intensity. Imposing vanishing front amplitudes E=0
!or #uT=0" and T=0 at one end of the front, it is found that
the functions T and E are solutions of the following ordinary
differential equations:

2E#uT + uT = 0,

!27"
u#uE + 2#uTE + 2d1#u!E#uE" = 0,

where d1=D1 /D0.

B. Solutions without turbulence spreading

We first address the case without spreading !d1=0". A
particular solution exists at T=−u and E=−u2 /2, or equiva-
lently

T =
x − x0

!0!t0 − t"
, E =

!x − x0"2

2D0!t0 − t"
. !28"

It can be verified directly from Eqs. !24" and !25" that this
solution is in fact valid for all times. However it is only
physically meaningful for t& t0 since the turbulence intensity
must be positive !the situation for the temperature is more
complicated since it depends on the sign of x−x0, and also it
is defined up to an arbitrary constant". In fact, Eq. !28" is not
a front since it does not link two different states of the
plasma. Moreover it exhibits a finite time singularity at t= t0.
More physical solutions can be constructed using the follow-
ing method. The system Eq. !27" for d1=0 is shown in Ap-
pendix A to be equivalent to the following set of equations:

#-. = !/ + 1
2"., #-/ = !2/ − ."/ , !29"

where E=u2/ and T=u., and the variable - is related to the
variable u via the relation du /u=−/d-. The system Eq. !29"
is solved numerically by considering it as a dynamical sys-
tem, where - plays the role of time. Two fixed points obvi-
ously exist: !.I=0, /I=0", and !.II=−1, /II=−1 /2". The
first point is unstable !more precisely it is neutrally stable
along one direction and unstable along all the others", while
the second fixed point is stable !see Appendix A for details".
This stable point actually corresponds to the solution Eq.
!28". “Trajectories” can be found, that link the first fixed
point to the second one. These trajectories correspond to dif-
fusive front solutions. An example is shown in Fig. 1, which
is a self-similar front as a function of the “time” -. It is
obtained by launching a trajectory that starts from the point I
!.=0, /=0", with a horizontal tangent, and ultimately
reaches the point II !.II=−1, /II=−1 /2". The trajectory is
shown in Fig. 2. Once the functions .!-" and /!-" are
known, their shape can be found as functions of the variable

FIG. 1. !Color online" Self-similar front, D1=0.
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u =
x − x0

#D0!0!t − t0"$1/2 ,

using the change of variable du /u=−/d-, i.e.,

u = u0 exp0− *
0

-

/!-!"d-!1 . !30"

However, this reconstruction leads to negative turbulence in-
tensities, which are not acceptable. Moreover, Eq. !30"
shows that the variable

u =
x − x0

#D0!0!t − t0"$1/2

increases with - since / is negative. Therefore the variables
t and - flow in opposite directions. This implies that the front
reaches the zero value for infinite time t. This is not what is
searched for, as one would like the front to vanish when t
→ t0 to avoid a singularity at t= t0. More physical solutions
can be constructed by using the time reversal symmetry rule
!+t=−1 and +x=1",

x → x, t → − t, T → − T, E → − E . !31"

This is done by expressing the functions E=u2/ and T=u.
as functions of u2, then making the transform u2→−u2,
E→−E, and T→−T. It is interesting to recover the particular
solution Eq. !28" when using this method. The fixed point II
!.II=−1, /II=−1 /2" corresponds to the explicit solution
T=−u and E=−u2 /2. This solution is the same as Eq. !28",
but with the restriction t, t0 for the variable u to be mean-
ingful. The symmetry rules !31" allow us to extend the solu-
tion to the domain t& t0. In this particular case, this operation
demonstrates that the solution Eq. !28" is in fact valid for all
times #this can be verified directly from the initial system

Eqs. !24" and !25"$. When applied to the example of Fig. 1,
this technique leads to the solution shown in Fig. 3 !choosing
u0=1". This solution is defined for t& t0. However it persists
in exhibiting a finite time singularity at t= t0. Although the
time t= t0 can be chosen to be arbitrarily large, this remains a
pathological aspect of the solution. Finite size effects might
cure this problem, but this question is beyond the scope of
the present paper.

C. Self-similar fronts with turbulence spreading

Accounting for spreading does not raise any special dif-
ficulty, since the same procedure can be used. However the
new system is somewhat more difficult to solve since the
number of dynamical variables is higher. Indeed the system
Eq. !29" is replaced by

#-. = !/ + 1
2"., #-/ = /0 ,

!32"

#-0 = − 6/2 + 7/0 − 02 +
1

2d1
!. − 2/ + 0" ,

where the definitions of the functions and variables are the
same as before. This system admits three fixed points:

Fixed point I .I = 0, /I = 0, 0I = 0;

Fixed point II .II = − 1 + 3d1, /II = − 1
2 , 0II = 0; !33"

Fixed point III .III = 0, /III = −
1

6d1
, 0III = 0.

The stability analysis is done in Appendix A. It turns out that
the first fixed point is always unstable !in fact one direction
is neutrally stable and all the others are unstable". For d1
&1 /3 the second fixed point is a saddle point, while the third
fixed point is stable. Conversely when d1,1 /3, the second

FIG. 2. !Color online" Trajectory of a self-similar front in phase space,
D1=0. The arrow shows the direction of time t. The variable - flows in the
opposite direction, i.e., from the point I !.=0, /=0", to the point II
!.II=−1, /II=−1 /2".

FIG. 3. !Color online" Self-similar diffusive front, D1=0.
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point is stable while the point III is a saddle point. Hence
trajectories can be constructed, which link the first point to
the third !respectively second" fixed point when d1&1 /3 !re-
spectively d1,1 /3". An example of trajectory linking the
fixed points I and III is shown in Fig. 4, and the correspond-
ing front is drawn in Fig. 5 for d1=0.25. The same procedure
as in the previous section has been used to construct fronts
with positive intensity. This trick cannot be used for d1
,1 /3. The trajectories which are found in this case link the
fixed point I to the fixed point II. As a consequence, their
turbulence intensity is negative and the temperature positive.

This difficulty is overcome by using the system invariance
by central symmetry !+t=−1 and +x=−1", i.e.,

x → − x, t → − t, T → T, E → − E . !34"

The resulting front exhibits a positive intensity. An example
is shown in Fig. 6 for d1=1. Therefore acceptable self-
similar solutions are found for all values of d1. They never-
theless exhibit a finite time singularity as mentioned before.
These solutions are in essence diffusive. Since they appear
well above the threshold, they can be considered as the non-
linear version of the diffusive heat waves discussed previ-
ously. We note also that “conventional” diffusive pulses can
be found by reversing the “time” -, and building trajectories
which start from the now stable fixed point I and return to it.
Note that a difference is made here between a “front,” that
relates two different states !i.e., two fixed points in the phase
space", and “pulses,” which are transients around a single
state !a trivial example is illustrated by a simple diffusion
equation". Regarding this question, we note that the present
system is characterized by one stable state only. Results
would certainly change for a bistable system, which would
be found for instance when including a strong shear flow. In
the latter case, nonlinear pulse solutions are also expected.

V. BALLISTIC FRONTS

A. Linear front selection

Ballistic fronts are solutions of the form F!x−ct" con-
necting two states of the plasma, where F stands for the two
fields T and E, and c is the front velocity. It is possible to use
the linear dispersion relation derived in Sec. III to get a first
idea of the characteristics of a front that moves into an un-
stable medium. The solutions which are found in this way
are approximate, but this method enlightens the nonlinear
results. Here we follow here closely the procedure described
by Dee and Langer29 !also see the overview by Cross and
Hohenberg30 and Diamond et al.11 for an early application in

FIG. 4. !Color online" Trajectory of a self-similar front in phase space, with
spreading !D1=0.25D0".

FIG. 5. !Color online" Self-similar diffusive front with spreading
!D1=0.25D0".

FIG. 6. !Color online" Self-similar diffusive front with spreading !D1=D0".
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plasma physics". Expressing the leading edge of a front as a
Fourier integral, its shape at a given position and time reads

F!x = ct,t" = 2 dk

2(
Fk exp-i#kc − )!k"$t. , !35"

where )!k" is a solution of the linear dispersion relation Eq.
!15". The contour of integration is in the complex plane
k=qL+ i"L, and the pulsation is also a complex number
)=)r+ i)i. Performing the integral by using a method of
steepest descent, one finds the prescription for the wave
number k* that characterizes the front29

3c = dk)3k=k*. !36"

Minimizing the damping of the front leads to a second
condition

c =
)i!k*"

"L
. !37"

These two relations have been interpreted in the following
way by Van Saarlos.31 The condition Eq. !36" leads to the
following relation: Im!dk)"=#qL

)i3"L
=0. This constraint de-

fines a relation linking qL to "L, so that )r and )i can be
considered now as a function of "L only, i.e., )r,i!"L"
=)r,i#qL!"L" ,"L$. Equation !37" then leads to the relation
c!"L"=)i!"L" /"L. Using now the real part of Eq. !36", it is
readily shown that the speed of the front is the one that is
minimal among the various values c!"L", i.e., such that
#"L

c=0. In other words, the most robust front is the slowest
one. In summary the front speed is fully determined by three
conditions, namely,

3#qL
)i3"L

= 0, !38"

which relates qL to "L, and

c!"L" = )i!"L"/"L, !39"

#"L
c = 0. !40"

This recipe is now applied to the two-field critical gradient
model. It is quite important to note that this technique applies
to a front that propagates into an unstable state. Hence the
linear dispersion relation Eq. !16" must be applied for an
arbitrary unstable state !A0 ,E0". It can be easily verified that
qL=0 is the solution of the equation #qL

)i3"L
=0. The relation

c!"L"=)i!"L" /"L then yields an explicit equation for the
speed of each front characterized by the wave number "L,
namely,

c!"L" =
1
2
0 !

"L
+ !D1 + D0""L1

± sg!"L"+v f
2 +

1
4
0 !

"L
+ !D1 − D0""L12,1/2

, !41"

where v f = !D0!0A0E0"1/2 and !=!0!A0−"c"−2!nlE0 !!,0
since the state is unstable". One has in principle to solve
#"L

c=0 to find the front speed. However examining the
structure of Eq. !41" leads to a typical scale of the front of
the order of !D /!"1/2, i.e., of the order of the correlation
length of turbulence !D=D0+D1". Two limit cases can be

distinguished. If !"!0A0, the velocity v f is much larger
than !!D"1/2. The front speed exhibits a minimum for
"L%!!eff /D"1/2 so that c!"L"%v f. In the opposite case,
one recovers the Fisher-Komogorov solution, i.e.,
c!"L"= 1

2 !! /"L+D1"L". The front typical wave number is
"L= !! /D1"1/2, and the minimum speed appears to be
c= !!D1"1/2. In fact, in all cases the front speed is the alge-
braic mean between the diffusion coefficient and the growth
rate. This result has been extended to a fractional version of
the Fisher-Kolmogorov equation.32

This analysis bears some drawbacks. The choice of the
unstable state !A0 ,E0" is not constrained here. A natural
choice would be the unstable fixed point E0=0. However this
is a somewhat ill-posed problem since in this case the turbu-
lent diffusion coefficients D0 and D1 vanish, and the velocity
v f as well. This is why a detailed analysis of the nonlinear
regime is required at this point.

B. Nonlinear ballistic solutions

We now turn to exact nonlinear ballistic solutions. For
this analysis, it is easier to start from the system Eqs. !7" and
!8". This question has already been investigated by Sarazin et
al.14 for a similar two-field system, where the coupling be-
tween the turbulent flux and the turbulent intensity was how-
ever different. Also analytical results have been provided by
Gürcan and Diamond23 for this very same two-field CGM
model at fixed temperature gradient. They also solved nu-
merically the dynamics of a perturbation for the complete
system. For the case at fixed temperature gradient, the equa-
tion Eq. !8" is a variant of the Fisher-Kolmogorov equation,
which admits ballistic front-like solutions. Here we focus the
analysis on the case where fronts come from the interplay
between the gradient relaxation via the transport equation
coupled to the turbulent intensity dynamics. As mentioned
before, we expect this kind of situation to occur at low heat
flux, i.e., close to the threshold "c. To start with, we get rid of
all kinds of mode coupling, including turbulence spreading,
i.e., !nl=0 and D1=0. The first step consists in choosing
normalized coordinate 1='!0 /D0x and time 2=!0t, so that
the system Eqs. !7" and !8" reads !far from the heat source
location"

#2A = #11!EA" , !42"

#2E = !A − "c"E . !43"

Looking for solutions of the form A!3", E!3", where
3=2−1 /c, one finds that

#3!EA" = c2!A − "c" , !44"

#3E = !A − "c"E , !45"

where a constant of integration has been chosen such that the
marginal state A="c is a fixed point of the dynamical system.
It is quite convenient to introduce the flux 4=EA as an aux-
iliary function. It appears readily that E exp!−4 /c2" is a first
integral of the system. The formal solution of Eqs. !44" and
!45" is
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3 =
Ef

c2*4 d4

4 exp(−
4

c2 + 1) − Ef"c

, !46"

E = Ef exp( 4

c2 − 1) , !47"

A =
4

Ef
exp(−

4

c2 + 1) , !48"

where Ef is a reference value, which corresponds to 4=c2.
The reason for this normalization is that the denominator
under the integral in Eq. !46" is minimum when 4=c2. A
front solution exists if this denominator admits 2 zeros on
each side of 4=c2. This situation occurs if Ef"c*c2. An
explicit solution can be found when Ef"c /c2 is close to one.
Introducing the parameters

5 = 02(1 −
Ef"c

c2 )11/2
, + = "c

'5/2
1 − 52 !49"

one finds that for 5"1,

4 = c2#1 + 5 tanh!+3"$, E = Ef exp#5 tanh!+3"$ ,
!50"

A = "c

1 −
52

2
tanh2!+3"

1 −
52

2

.

The turbulence intensity exhibits a front structure and ranges
between Ef!1−5" and Ef!1+5". The shape of the temperature
gradient is rather a pulse, whose background corresponds to
a marginal state A="c and exhibits a maximum at
A="c / !1−52 /2". An example is shown in Fig. 7. As usual
for this type of system, the front velocity c is related to the

turbulence intensity Ef. According to the selection rule based
on the leading edge stability, the most stable front is the
slowest one, i.e., such that c2=Ef"c. Given the normaliza-
tion, the order of magnitude of this speed in real units is
'D0Ef!0"c, i.e., is identical to the front velocity found in
Sec. V A, Eq. !41" when the gradient is close to the threshold
A0%"c and E0=Ef. This scaling reflects the interplay be-
tween the profile relaxation and turbulence dynamics. It is
obviously related to the dynamics of avalanches, as ex-
plained by Sarazin et al.14

The general case corresponds to the system Eqs. !7" and
!8", and in order to make the connection with the work of
Gürcan and Diamond,23 we choose to normalize the system
to a radius 1='!0 /D1x and time 2=!0t, i.e.,

#2A = d0#11!EA", #2E = !A − "c"E − gE2 + #1!E#1E" , !51"

where g=!nl /!0 and d0=D0 /D1. Ballistic front solutions of
Eq. !51" correspond to functions that depend on the variable
3=2−1 /c only. It is quite useful to introduce the auxiliary
function F, defined as the derivative of E with respect to 3,
i.e., F=#3E. The resulting equations exhibit a singularity at
E=0, which can be removed by introducing the variable -
such as #-=−E#3. The functions A!-", E!-", and F!-" are
found to be solutions of the autonomous system

#-A = −
c2

d0
!A − A!" + AF, #-E = − EF ,

!52"
#-F = F2 − c2#F − !A − "c"E + gE2$ .

The dynamical system Eqs. !52" admits three fixed points

Fixed point I AI = A!, EI = 0, FI = 0;

Fixed point II AII = −
1

1 − d0
A!, EII = 0, FII = c2; !53"

Fixed point III AIII = A! EIII = E! =
A! − "c

g
FIII = 0.

The stability of these fixed points is discussed in Appendix
B. The fixed point I is stable, while the two others are saddle
points. Fronts can be built by linking a saddle point to an-
other saddle point, or by linking a saddle point to the stable
fixed point I, depending on the parameters. These “trajecto-

FIG. 7. !Color online" Ballistic front "c=1, Ef =1, and 5=0.25.

FIG. 8. !Color online" Trajectory in the phase space for the system Eq. !52"
"c=1, A!=2, "c=1, D1=D0, and c=2.
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ries” cover both the class of solutions described above and
the previous work by Gürcan and Diamond.23 The Fisher-
Kolmogorov equation corresponds to the limit d0=0. In prac-
tice, trajectories linking fixed points, namely fronts, are
found in a large domain of parameters. An example is given
in Fig. 8 !fixed point III to fixed point I" and the correspond-
ing front is shown in Fig. 9. Also it is found numerically that
for a given set of parameters fronts do not exist below some
critical value of the speed c. Following the selection rule
mentioned before, this lowest velocity is the speed of the
most robust !meaning less damped" front. In real units it
always scales as the algebraic mean of the diffusion coeffi-
cient and growth rate. It is quite remarkable that adding
spreading and mode coupling does not change the scaling of
the front velocity. In fact this can be understood in view of
the process of linear front selection as discussed in Sec. V A.
As the front speed results from a balance between the linear
growth rate and some turbulent diffusion, it is quite insensi-
tive to the details of the various nonlinear processes which
are involved. We note also that the front speed can be quite
low when the gradient is close to the threshold, i.e., at low
heat flux.

VI. DISCUSSION

This paper presents some dynamical properties of a two-
field critical gradient model, which connects a turbulent
transport equation to an evolution equation for the turbulence
intensity. The dynamics of the turbulence intensity is charac-
terized by an exponential growth above a stability threshold,
a quadratic saturation term, and a turbulence spreading com-
ponent. It is shown here that this model exhibits both diffu-
sive and ballistic behaviors. This can be verified by analyz-
ing the linear response of this system. More precisely, a
diffusive response is obtained when the temperature gradient

is well above the stability threshold, and also when the per-
turbation is characterized by large spatial scales. Conversely,
thermal waves that propagate ballistically are found when
the temperature gradient is close to the threshold, and also
for perturbations that exhibit small spatial scales. The condi-
tion for switching from ballistic to diffusive dynamics can be
expressed as a constraint on the thermal flux versus the typi-
cal wave number k of the pulse. Ballistic propagation is
found when the thermal flux is smaller than nD0"c!k! "2,
where n is the density, "c is the critical temperature gradient,
D0 a typical !mixing-length" turbulent diffusion coefficient,
and ! a turbulence correlation length. This result is valid if
the pulse length scale is larger than the turbulence correlation
length !i.e., k! &1", which is also a condition for using a
mean field model. The ballistic behavior comes from the
interplay between the profile relaxation due to turbulence,
and the growth of turbulence intensity due to profile steep-
ening. This mechanism is the same as the one described pre-
viously for avalanching.14 As mentioned before in this con-
text, a system will be prone to ballistic propagation if it is
stiff. Also ballistic propagation may be related to the ques-
tion of gyro-Bohm versus Bohm scaling law of confinement.
One would expect the system to be sensitive to the plasma
size when ballistic fronts are present. On this basis, a Bohm
scaling would thus be expected at low heat power.

The ability of a two-field critical gradient model to be-
have diffusively or ballistically is a robust property. In fact
this behavior is found to persist in the nonlinear regime. A
manifestation of this robustness is the rich dynamics of
fronts that has been found. Fronts are defined here as pertur-
bation linking two different states of the plasma, for instance
turbulent and nonturbulent states. It is found that both diffu-
sive self-similar and ballistic fronts exist for a two-field criti-
cal gradient system.

Self-similar fronts are diffusive in nature. The diffusion
coefficient that rules the dynamics of these fronts is the tur-
bulent one. However self-similar diffusive fronts are not ge-
neric for this particular two-field critical model. They require
the system to be well above the threshold, a condition remi-
niscent of the linear analysis. Also their existence relies on a
vanishing saturating quadratic term in the evolution equation
for the turbulence intensity. In other words, the dominant
nonlinear linearities have to be the interplay between the
turbulence growth and profile relaxation on the one hand,
and turbulence spreading on the other hand. Finally these
solutions exhibit a finite time singularity that is not physical,
but might be prevented by finite size effect.

Ballistic fronts are a generic feature of a two-field criti-
cal gradient model. Two mechanisms exist in fact. The first
one appears in the equation for the turbulence intensity
alone, i.e., for frozen temperature gradient, and combines
turbulence spreading, exponential growth and quadratic satu-
ration. This equation is a variant of the Fisher-Kolmogorov
equation that describes reaction-diffusion processes, and has
been extensively studied in the past.23 The second mecha-
nism is an avalanche-like process that combines profile re-
laxation and exponential growth. The speed and radial scale
of ballistic fronts can be derived by analyzing the linear sta-
bility of the front leading edge.31 Indeed the most robust

FIG. 9. !Color online" Ballistic front or the system Eq. !52" "c=1, A!=2,
"c=1, D1=D0, and c=2.
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front, meaning the one that is marginally stable, is the slow-
est one. Applying this rule to the present model, it is found
that the front speed is the quadratic average of the instability
growth rate and turbulent diffusion coefficient, v f = !!D"1/2.
A study of the nonlinear regime confirms this finding. It is
found numerically that a minimum of the front speed exists
and that it is of the order of v f. This scaling remains valid
when combining both mechanisms, avalanche-like and
Fisher-Kolmogorov-type. It is also found that the radial scale
of a fronts is of the order of !D /!"1/2, i.e., of the order of a
few turbulence correlation lengths.

In a tokamak plasma, the velocity v f scales as the dia-
magnetic velocity, i.e., is of the order of 100–1000 m s−1 for
usual conditions. We note however that it can be smaller
when the temperature gradient is close to the threshold.
Hence a ballistic front will propagate faster than a diffusive
one, since the turbulent diffusion coefficient is of the order of
a few m2 s−1. At this stage, one may try a tentative interpre-
tation of the observation of “slow” and “fast” transients in
JET plasmas, where a slow transient would correspond to
heat modulation !as it is well described by a one-field CGM
model", while a fast transient would corresponds to a cold
pulse triggered by impurity injection. Since the background
plasma is the same for both experiments, one cannot argue
about the distance to the threshold or on stiffness. On the
other hand, it might be possible that a thermal wave triggered
by a heat modulation using rf heating exhibits large spatial
scales, whereas a cold pulse produced by impurity injection
is likely sharper, sharp enough to enter the ballistic regime.
Independent of these rather speculative arguments, the
present study certainly shows that a model based on ordinary
differential equations, may lead to diffusive or ballistic be-
haviors, which is in itself an interesting result. An open ques-
tion though is whether this dual character persists when the
effect of shear flow is included. This question is related to
the problem of front propagation through a transport barrier.
It is also linked to the issue of barrier formation via front
propagation, which has already been addressed elsewhere
with similar results.11,35

VII. CONCLUSION

This paper shows that a two-field critical gradient model
that couples a heat equation to an evolution equation for
turbulence intensity exhibits the characteristics of both diffu-
sive and ballistic dynamics. This property becomes apparent
when analyzing the linear response of this system for a heat
wave, which is diffusive or ballistic depending on plasma
parameters and wave number. More precisely diffusion is
found when the background heat flux is high enough for the
temperature gradient to largely exceed the threshold, while
ballistic behavior is more prominent close to a marginal
state. Also a sharp pulse propagates ballistically while a
smoother one diffuses. This dual character is recovered when
investigating the nonlinear solutions of this system. Self-
similar diffusive fronts exist when the gradient is well above
the threshold. The effective diffusion coefficient for propa-
gation is of the order of the steady turbulent diffusivity.
Hence self-similar diffusive fronts evolve slowly. Ballistic

fronts have also been found, which propagate much faster.
The front velocity is of the order of the quadratic mean of the
turbulent diffusion coefficient and a typical instability
growth rate. In a tokamak, this corresponds to a velocity of
the order of a diamagnetic velocity, i.e., of the order of
100–1000 m s−1. There is no precise recipe for switching
from one solution to the other. However, the general trend is
that self-similar diffusive fronts appear at large fluxes !well
above the threshold", while ballistic fronts are characterized
by a broader domain of existence. Ballistic fronts due to the
interplay between profile relaxation and turbulence intensity
dynamics appear close to the stability threshold. Thus the
nonlinear results are consistent with the linear analysis.
Hence it can be concluded that the dual character of a two-
field critical gradient model is a robust feature, which might
explain why the same physical system exhibits both slow
diffusive and fast ballistic transport transients.
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APPENDIX A: SELF-SIMILAR FRONTS

We consider here the system Eq. !27", assuming in a first
stage d1=0. An alternative form is

2E#uT = − uT, #uE = T . !A1"

One can use the usual sequence of tricks for solving a set of
nonlinear differential equations. First, the explicit depen-
dence on the variable u can be reduced by performing the
change of functions33 E=u2/ and T=u., a consequence
!again" of scale invariance. This procedure leads to the new
system

2/!u#u. + ." + . = 0, u#u/ + 2/ − . = 0. !A2"

The new system is equidimensional in the variable u !i.e., it
is invariant when changing u in au, where a is a constant".
Hence the explicit dependence on u can be eliminated via the
change of variable u=e−v,33 i.e.,

2/#v. = !2/ + 1"., #v/ = 2/ − . . !A3"

The new system is autonomous, i.e., no longer depends on
the variable v. Nevertheless it exhibits a singularity at /=0
which is difficult to deal with. It corresponds to a physical
situation where turbulence is suppressed. This technical dif-
ficulty is overcome by performing a new change of variable
such that #-=/#v,34 which yields the tractable system Eq.
!29". This system can be treated in the usual way, i.e., by
considering it as a set of equations defining trajectories in the
space !. ,/", with the variable - playing the role of time.34,30

There is no motion invariant for this system. Nevertheless,
its behavior can be determined by looking at the stability of
the fixed points. Two fixed points are readily found:
!.I=0 , /I=0", and !.II=−1, /II=−1 /2". Their stability is
investigated by calculating the eigenvalues of the tangent
matrix: a positive real part of an eigenvalue corresponds to a
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“repulsive” direction determined by the corresponding eigen-
vector, i.e., the trajectory moves away from the fixed point
along this line, while a negative real part corresponds to an
attractive direction. If all directions are attractive, the fixed
point is stable, while it is unstable if all directions are repul-
sive. For the present system, the tangent matrix reads as

M = (/ + 1
2 .

− / − . + 4/
) . !A4"

It is easily found that the first fixed point !.I=0 , /I=0"
is characterized by a neutral direction along the / axis
!corresponding to the eigenvalue" 6−=0 and an unstable
direction along the . axis !6−=1 /2". Hence it is essentially
an unstable fixed point. The second fixed point
!.II=−1, /II=−1 /2" is stable !6±=− 1

2 ± i
2

" and corresponds
to the particular solution presented previously. We note that
the direction of “time” - is arbitrary, i.e., when changing - in
−-, an attractive direction becomes repulsive and vice versa.
Hence for a trajectory I→ II, there exists a trajectory II→ I
obtained via time reversal. With the present convention, tra-
jectories can be built, which link the unstable fixed point I to
the stable fixed point II. An example is shown on Figs. 1–3.

Adding turbulence spreading does not present any spe-
cial difficulty, except that it increases the order of the system.
The sequence of changes of functions and variables is the
same and will not be repeated here. The system Eq. !29" is
replaced by Eq. !32". As expected, the previous system Eq.
!29" is recovered when d1=0. This system admits three fixed
points given by Eq. !33". We note that the fixed points II and
III coalesce when d1=1 /3. The procedure is the same as
previously, i.e., identifying the stability of the fixed points.
The success of the procedure is however not guaranteed for a
3D system, in contrast to 2D systems. Using the fact that all
three fixed points are such that 0=0, the tangent matrix for
the system of coordinates !. ,/ ,0" is

M =4/ +
1
2

. 0

0 0 /

1
2d1

− 12/ −
1
d1

7/ +
1

2d1

5 . !A5"

For the fixed point I, the tangent matrix admits three eigen-
values 0, 1

2 , and 1
2d1

. Hence it is unstable in two directions,
and neutrally stable along the / axis.

For the fixed point II, the eigenvalues are solutions of
the equation

63 + (7
2

−
1

2d1
)62 + (3 −

1
2d1

)6 +
3
4

−
1

4d1
= 0. !A6"

An interesting limit case corresponds to d1→0, which makes
the connection with the previous analysis. One finds that a
large positive eigenvalue 60%1 / 2d1 and a couple of eigen-
values with a negative real part 6±%− 1

2 ± i. One direction is
repulsive while the other two are attractive. For the other
values of d1, a numerical analysis shows that there is always
an unstable direction for d1&1 /3, while all directions are

attractive for d1,1 /3. The second fixed point is stable when
d1,1 /3.

Finally, for the fixed point III, the eigenvalues are solu-
tions of the equation

(6 −
1
2

+
1

6d1
)(62 +

2
3d1

6 +
1

6d1
2) = 0. !A7"

This system admits three solutions 60= 1
2 − !1 / 6d1", and

6±=−!1 / 3d1"#1± !i /'2"$. As expected, for d1=1 /3 the
eigenvalues of points II and III are identical, i.e., 60=0 ,
6±=−17 !i /'2". If d1&1 /3, the real parts of all the s are
negative. In this case, the fixed point III is stable. For
d1,1 /3 one direction is unstable and it becomes a saddle
point. The fixed point III !resp. II" provides an exact analyti-
cal solution when d1&1 /3 !resp. d1,1 /3 ", similar to Eq.
!28". However these solutions are not acceptable since they
are singular when t= t0. Acceptable solutions can be con-
structed by considering trajectories which start from the un-
stable fixed point I, and reaches the fixed point III for
d1&1 /3 or the fixed point II for d1,1 /3. As mentioned
before, the success of this construction is not guaranteed.
However both types of fronts are indeed found numerically
when using this recipe. An example is shown in Fig. 5. It is
stressed that the nature of the fronts is different from the case
without spreading when d1&1 /3 since the temperature dif-
ference goes back to zero, i.e., exhibits a pulse shape rather
than a front shape. The corresponding trajectory is shown in
Fig. 4.

APPENDIX B: BALLISTIC FRONTS

We start from the system Eqs. !52". The method for ana-
lyzing this system is the same as in Appendix A. The dy-
namical system Eqs. !52" admits 3 fixed points Eqs. !53".
The tangent matrix for the “trajectory coordinates” !A ,E ,F"
is

M =4F −
c2

d0
0 A

0 − F − E

c2E c2#!A − "c" − 2gE$ 2F − c2
5 . !B1"

The fixed point I is characterized by 3 eigenvalues −!c2 / d0",
0, and −c2. Hence it is stable along all directions except one
line along which it is neutrally stable. The tangent matrix of
the second fixed point admits 3 eigenvalues −#!1 / d0"−1$c2,
−c2, and c2. Hence, if d0&1, two directions are attractive,
whereas the third one is repulsive. In other words the second
fixed point is a saddle point. Regarding the third fixed point,
the eigenvalues of the tangent matrix are solutions of the
equation

63 + c2(1 +
1
d0
)62 − c2(8 −

c2

d0
)6 −

c4

d0
gE!

2 = 0, !B2"

where 8=E!!2A!−"c". Since the coefficients of this polyno-
mial are real, zeros are either real or complex conjugate. In
fact it can be easily verified that the 3 zeros are always real.
It appears that all 3 eigenvalues cannot have simultaneously
positive real parts since their sum is negative #equal to
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−c2!1+1 /d0"$. Moreover the product of the eigenvalues is
equal to c4gE!

2 /d0, which is always positive. Hence two roots
are negative and one is positive, which means that the third
fixed point is a saddle point characterized by two stable and
one unstable directions. An interesting limit case occurs
when the product of the eigenvalues c4gE!

2 /d0 is small. This
covers a broad range of situations: small front speed c, gra-
dient close to the threshold, large thermal diffusion D0,
and/or small nonlinear mode coupling g. The solutions of Eq.
!B2" are then approximately

60 = −
c2gE!

2

d08 − c2 ,

!B3"

6± = −
1
2
(1 +

1
d0
)c2 ±

1
2
'(1 −

1
d0
)2

c4 + 48c2.

Fronts can be built by linking a saddle point to another
saddle point, or by linking a saddle point to the stable fixed
point I. However we stress that not all solutions are possible
for a given set of parameters. In particular, no fronts are
usually found numerically for a speed c below a critical
value. An example of trajectory tying the fixed point III to
the fixed point I is shown in Fig. 8 and the corresponding
front is shown in Fig. 9.

At this stage, it is possible to make the connection with
previous works. The solution given in Sec. V corresponds to
the case g=0,d1=0 ,A!=Ac. Conversely the analytical solu-
tions studied by Gürcan and Diamond23 correspond to d0"1
and a constant of integration A! that is left free, but greater
than "c. In this case, one recovers the Fisher-Kolmogorov
equation and the eigenvalues read

60 =
c2

d0
, 6± = −

1
2

8 ± +1
4

82 + c2gE!
2,1/2

. !B4"

Solutions exist, which connect the fixed point III to the fixed
point I or to the fixed point II. This study will not be repeated
here and can be found in Ref. 34. For d0=0, a particular
explicit solution can be found such that F=c2!1− E / E! " and
c2= 1

2gE!
2 namely,

E = E!01 − exp(−
c23

E!
)1 for 3 9 0

!B5"
E = 0 for 3 * 0.

The velocity of the front is

c =
1
'2

#!0!A! − Ac"D1E!$1/2,

i.e., scales as a diamagnetic velocity in a tokamak plasma.
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